The letters "pH" represent the French words "pouvoir hydrogene" which means "hydrogen power".

- The definition of pH is pH is equal to the negative \log (logarithm) of the
hydrogen ion concentration of a solution.
- The logarithm of a number is the power to which 10 must be raised to equal that number.
A pH value of less than 7 indicates a(n) \qquad solution. A pH value of ___ indicates a neutral solution. A pH value of more than 7 indicates $a(n)$ basic solution.

PROBLEMS: Show all work and circle the final answer.

1. Determine the pH of a $0.010 \mathrm{M} \mathrm{HNO}_{3}$ solution.

$$
p H=-\log \left[H^{+}\right]=-\log \left[1.0 \times 10^{-2}\right]=-(-2.0) \quad p H=2.0
$$

2. What is the pH of a $2.5 \times 10^{-6} \mathrm{M}$ solution of HCl ?

$$
p H=-\log \left[2.5 \times 10^{-6}\right]=-(-5.6) \quad p H=5.6
$$

3. Calculate the pH of a solution of $0.0025 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
p H=-\log \left[2\left(2.5 \times 10^{-3}\right)\right]=-(-2.3) \quad p H=2.3
$$

4. Calculate the pH of a 0.0010 M NaOH solution.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}^{+}\right]\left[1.0 \times 10^{-3}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-11}} \\
& \left.p H=-\log \left[1.0 \times 10^{-11} \mathrm{M}\right)\right]=-[-11] \quad \mathrm{pH}=11
\end{aligned}
$$

5. What is the pH of a $0.020 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ solution?

$$
\begin{array}{ll}
{\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} & {\left[\mathrm{H}^{+}\right]\left[(2)\left(2.0 \times 10^{-2}\right)\right]=1.0 \times 10^{-14}} \\
\left.p H=-\log \left[2.5 \times 10^{-13}\right)\right]=-(-12.6) & p H=13
\end{array}
$$

6. a) What is the hydrogen ion concentration of an aqueous HCl solution that has a pH of 3.0?

$$
p H=-\log \left[H^{+}\right] \quad 3.0=-\log \left[H^{+}\right] \quad\left[H^{+}\right]=1.0 \times 10^{-3} M
$$

b) What is the hydroxide ion concentration of this same solution?

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[1.0 \times 10^{-3}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-11} \mathrm{M}
$$

c) Which ion, H^{+}or OH^{-}, is in greater concentration? ${\xrightarrow{+}\left(1.0 \times 10^{-3}>1.0 \times 10^{-11}\right), ~(a)}^{H^{\prime}}$
d) Is this solution acidic or basic? acidic
7. Find the $\left[\mathrm{H}^{+}\right]$and the $\left[\mathrm{OH}^{-}\right]$of a solution with a pH of 3.494 .

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \quad 3.494=-\log \left[H^{+}\right] \quad\left[H^{+}\right]=3.206 \times 10^{-4} \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[3.206 \times 10^{-4}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{OH}^{-}\right]=3.1 \times 10^{-11} \mathrm{M}}
\end{aligned}
$$

Is this solution acidic or basic? acidic

