Answer each of the following questions using the equation provided. BE SURE TO BALANCE EACH EQUATION BEFORE SOLVING ANY PROBLEMS. SHOW ALL WORK.

1. $\xrightarrow{2} \mathrm{NO}+\underline{-} \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{NO}_{2}$
a. 2 moles of NO will react with \qquad mole(s) of O_{2} to produce \qquad 2 mole(s) of NO_{2}.
b. ? moles $\mathrm{NO}_{2}=3.6$ moles $\mathrm{O}_{2} \times \frac{2 \text { moles } \mathrm{NO}_{2}}{1 \text { moles } \mathrm{O}_{2}}=7.2$ moles NO_{2}
c. How many moles of NO must react to form 4.67 moles of NO_{2} ?

$$
? \mathrm{~mol} \mathrm{NO}=4.67 \mathrm{~mol} \mathrm{NO}-\frac{2 \mathrm{~mol} \mathrm{NO}}{2 \mathrm{~mol} \mathrm{NO}_{2}}=4.67 \mathrm{~mol} \mathrm{NO}
$$

2. $\xrightarrow{4} \mathrm{NH}_{3}+\underline{3} \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{~N}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O}$
a. 20 moles of NH_{3} are needed to produce \qquad 30 moles of $\mathrm{H}_{2} \mathrm{O}$.

$$
? \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=20 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{NH}_{3}}=30 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

b. How many moles of N_{2} will be produced if 3.5 moles of O_{2} react?

$$
? \mathrm{~mol} N_{2}=3.5 \mathrm{~mol} \theta_{2} \times \frac{2 \mathrm{~mol} N_{2}}{3 \mathrm{~mol} \theta_{2}}=2.3 \mathrm{~mol} N_{2}
$$

3. $\xrightarrow[4]{4} \mathrm{AlF}_{3}+\underset{\sim}{3} \mathrm{O}_{2} \rightarrow \underset{\sim}{2} \mathrm{Al}_{2} \mathrm{O}_{3}+\underset{-}{6} \mathrm{~F}_{2}$
a. 20 moles of AlF_{3} will produce \qquad 30 moles of F_{2}.

$$
? \mathrm{~mol} F_{2}=20 \mathrm{~mol} A l F_{3} \times \frac{6 \mathrm{~mol} F_{2}}{4 \mathrm{~mol} \mathrm{AlF} F_{3}}=30 \mathrm{~mol} F_{2}
$$

b. 0.8 moles of AlF_{3} will react with 0.6 moles of O_{2}.

$$
? \mathrm{~mol} \mathrm{AlF} F_{3}=0.6{\mathrm{~mol} \Theta_{2}} \times \frac{4 \mathrm{~mol} \mathrm{AlF}}{3} 10 \mathrm{~mol} \Theta_{2} \quad=0.8 \mathrm{~mol} \mathrm{AlF}_{3}
$$

4. $-\mathrm{C}_{3} \mathrm{H}_{8}+\underset{-}{5} \mathrm{O}_{2} \rightarrow \underline{3} \mathrm{CO}_{2}+\underset{4}{4} \mathrm{H}_{2} \mathrm{O}$
a. How many moles of oxygen react with 11 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?

$$
? \mathrm{~mol} \mathrm{O}_{2}=11 \mathrm{malC}_{3} \mathrm{H}_{8} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=55 \mathrm{~mol} \mathrm{O}_{2}
$$

b. How many moles of CO_{2} are produced if 3.5 moles of water are produced?

$$
? \mathrm{~mol} \mathrm{CO}=3.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=2.6 \mathrm{~mol} \mathrm{CO}
$$

5. $\xrightarrow[3]{3} \mathrm{O}_{2}+\underset{4}{4} \mathrm{Fe} \rightarrow \xrightarrow[2]{2} \mathrm{Fe}_{2} \mathrm{O}_{3}$
a. Fill in the following word equation-- three moles of oxygen gas react with four moles of iron to produce two moles of iron (III) oxide.
b. $\frac{2}{\text { oxide. }}$ moles of O_{2} are required to produce 3.0 moles of iron (III)
