Molarity:

- a quantitative description of solution concentration.
- Abbreviated \qquad M
Molarity $=\frac{\text { moles of solute }}{\text { liters of solution }}$

Problems: Show all work and circle your final answer.

1. To make a 4.00 M solution, how many moles of solute will be needed if 12.0 liters of solution are required?

$$
4.00 \mathrm{M}=\frac{\text { moles of solute }}{12.0 \mathrm{~L}} \quad \text { moles of solute }=48.0 \mathrm{~mol}
$$

2. How many moles of sucrose are dissolved in 250 mL of solution if the solution concentration is 0.150 M ?

$$
\begin{aligned}
& ? L=250 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.25 \mathrm{~L} \\
& 0.150 \mathrm{M}=\frac{\text { moles of solute }}{0.25 \mathrm{~L}} \quad \text { moles of solute }=0.038 \mathrm{~mol}
\end{aligned}
$$

3. What is the molarity of a solution of HNO_{3} that contains 12.6 grams HNO_{3} in 1.0 L of solution?

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{HNO}_{3}=12.6 \mathrm{~g} \mathrm{HNO}-\frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{63.0 \mathrm{gHNO}_{3}}=0.200 \mathrm{~mol} \mathrm{HNO} 3 \\
& M=\frac{0.200 \mathrm{~mol} \mathrm{HNO}}{3}-0.200 \mathrm{M}
\end{aligned}
$$

4. How many grams of potassium nitrate are required to prepare 0.250 L of a 0.700 M solution?

$$
\begin{aligned}
& 0.700 M=\frac{\text { moles of solute }}{0.250 \mathrm{~L}} \quad \text { moles of solute }=0.175 \mathrm{~mol} \\
& ? \mathrm{~g} \mathrm{KNO}_{3}=0.175 \mathrm{~mol} \mathrm{KNO} \times \frac{101.1 \mathrm{~g} \mathrm{KNO}_{3}}{1 \mathrm{~mol} \mathrm{KNO}}{ }_{3}=17.7 \mathrm{~g} \mathrm{KNO}_{3}
\end{aligned}
$$

5. $125 \mathrm{~cm}^{3}$ of solution contains 3.5 moles of solute. What is the molarity of the solution?

$$
\begin{aligned}
& ? \mathrm{~g} \mathrm{KNO}_{3}=0.175 \mathrm{~mol} \mathrm{KNO} \\
& M=\frac{101.1 \mathrm{~g} \mathrm{KNO}_{3}}{1 \mathrm{~mol} \mathrm{KNO}}=17.7 \mathrm{~g} \mathrm{KNO}_{3} \\
& 0.125 \mathrm{~L}
\end{aligned}=28 \mathrm{M}
$$

6. Which solution is more concentrated? Solution "A" contains 50.0 g of CaCO_{3} in 500.0 mL of solution. Solution "B" contains 6.0 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 4.0 L of solution. SHOW WORK!

$$
\begin{aligned}
& \text { "A": mol } \mathrm{CaCO}_{3}=50.0 \underset{\mathrm{~g} \mathrm{CaCO}_{3}}{ } \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.0 \underset{\mathrm{gCaCO}}{3}}=0.500 \mathrm{~mol} \mathrm{CaCO} \\
& \\
& ? L=500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.500 \mathrm{~L} \quad M=\frac{0.500 \mathrm{~mol}}{0.500 \mathrm{~L}}=1.00 \mathrm{M} \\
& \text { "B": } \quad M=\frac{6.0 \mathrm{~mol}}{4.0 \mathrm{~L}}=1.5 \mathrm{M} \quad \text { "B" is more concentrated: } 1.5 \mathrm{M}
\end{aligned}
$$

7. How many liters of solution can be produced from 2.5 moles of solute if a 2.0 M solution is needed?

$$
2.0 M=\frac{2.5 \text { moles }}{\text { liters of solution }} \quad \text { liters of solution }=1.25 L=1.3 L
$$

8. What would be the concentration of a solution formed when 1.00 g of NaCl are dissolved in water to make 100.0 mL of solution?

$$
\begin{aligned}
& ? \mathrm{~mol}=1.00 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.5 \mathrm{NaCl}}=0.0171 \mathrm{~mol} \mathrm{NaCl} \\
& ? L=100.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.1000 \mathrm{~L} \quad M=\frac{0.0171 \mathrm{~mol}}{0.1000 \mathrm{~L}}=0.171 \mathrm{M}
\end{aligned}
$$

